<li id="wkceg"></li>
<rt id="wkceg"><delect id="wkceg"></delect></rt>
<bdo id="wkceg"></bdo>
<strike id="wkceg"><acronym id="wkceg"></acronym></strike>

  • 帳號:
    密碼:
    智動化 / 文章 /

    先進材料是電動車快速崛起之關鍵
    [作者 Mark Patrick]   2018年04月10日 星期二 瀏覽人次: [9382]


    全世界幾乎所有政府都承諾要減少溫室氣體的排放。在所有這些承諾中,也許歐盟(EU)所做的最雄心勃勃,該組織已製定了到2050年將排放水平降低80%之目標。為實現這一目標,汽車行業將需要大量節能。美國也通過企業平均燃油經濟性(CAFE)標準做出對於降低排放的承諾,儘管這些標準和數據可能正處在現政府的審查之中。如果歐盟和美國繼續保持目前這種態勢,汽車製造商將面臨巨大的壓力,需要竭盡全力實現更高的燃油經濟性。


    這只是短期策略,從長遠來看,將需要採納電動車(EV)和混合動力車(HEV)以便能夠實現這些目標。彭博新能源金融(Bloomberg New Energy Finance)研究發現,到2040年,電動車的出貨量將達到約4100萬輛,佔全球汽車總出貨量的35%,這與當今電動車的出貨量相比是大幅增加。目前只有兩個國家的電動車市場佔有率較高:挪威為20%,荷蘭為10%左右。其他大多數主要領先國家之電動車市場佔有率均低於1.5%,這些主要的經濟體包括美國、德國、中國、法國、日本和英國。


    為了提升電動車比較低的市場佔有率,電動車採用的技術必須要實現重大變革。目前,電動車比相同級別的內燃機式引擎汽車更加昂貴,這阻礙了潛在的買家。成本較高的原因主要是由於EV中的功率變頻器和電力儲存設備。除了成本之外,電動車還有其他便利性方面的缺陷使其甘拜傳統汽車下風,例如充滿一次電所能維持的續航里程以及充電過程所需的時間。成本和便利性方面的問題都歸結於功率電子。


    如果電動車的效能更高,可導致採用體積更小、成本更低的變頻器,這也將使汽車有更遠的續航里程,針對這些問題可能已經有相應的解決方案。氮化鎵(GaN)或碳化矽(SiC)等裝置的寬能隙技術(wide bandgap)可以最大限度地降低矽裝置固有的功率損耗,這些材料相較於矽有更高的電子遷移率和更低的RDS(on)特性,兩種材料還具備更高的切換速率和更高的擊穿電壓(breakdown voltages)。


    使用這些材料來提高總體功率效能還會帶來其他優勢,特別是在熱管理方面。較低的散熱量降低了對散熱元件的需求,從而降低了相關的物料清單(BOM)成本,而佔用的空間也更小。


    GaN Systems公司基於GaN的GS6650x系列電晶體專為EV應用中的更高電壓(高達650V)系統而設計,並且採用該公司專利的Island Technology技術,可在晶片上垂直地汲取電流,不再需要母線(bus bars),從而節省更多空間和重量。這種技術還可以降低電感損耗,達到較高的品質因數(FoM)值,從而降低了對飽和電壓和切換損耗進行權衡的需求。該系列裝置採用GANPX封裝,在保持較小封裝尺寸的同時,也使電感和熱阻最小化。


    這種技術的另一個很好的例證是松下的X-GaN功率電晶體系列。這些電晶體的擊穿電壓也高達600V以上,而且外形小巧,運作所需的被動元件數量極少。



    圖1 : 用於HEV / EV設計的GS6650x系列氮化鎵電晶體。
    圖1 : 用於HEV / EV設計的GS6650x系列氮化鎵電晶體。

    圖2 : 傳統基於MOS矽制電晶體與松下X-GaN裝置的比較。
    圖2 : 傳統基於MOS矽制電晶體與松下X-GaN裝置的比較。

    另一家公司GeneSiC則專注於碳化矽(SiC)技術,其GA100SIC系列高級IGBT能夠提供低損耗運作。具備這種能力的一個原因是,GeneSiC公司已投資開發用基於SiC之蕭特基整流器來取代通常的矽基續流二極體(freewheeling diode),因此大大提高了切換性能。希望通過這些例子能夠闡述SiC和GaN技術領域的最新進展,在電動車系統設計人員實施未來幾代的功率變頻器設計時,這些例證也能夠提供具有競爭力的優勢。


    通過增加電動車之續航里程,減少充電時間,採用碳化矽和氮化鎵技術製造的功率元件會激發電動車市場之潛力。這些元件能夠輕鬆支持更高電壓,並具有更快的切換速度,能夠為構建未來幾代HEV / EV動力系統提供一個強有力平臺。總之,寬能隙化合物已經顯示出巨大潛在優勢,能夠幫助汽車行業實現國際立法為其設定的雄心勃勃之目標。


    (本文作者Mark Patrick為貿澤電子技術營銷經理)


    相關文章
    ? 電巴充能標準奠基 擴大能源新佈局
    ? 電動車充電革新與電源管理技術
    ? SiC MOSFET:意法半導體克服產業挑戰的顛覆性技術
    ? 充電站布局多元商業模式
    ? 以爆管和接觸器驅動器提高HEV/EV電池斷開系統安全性
    comments powered by Disqus
      相關新聞
    » 臺達攜手珍古德協會與海科館 三方合作推動珊瑚復育教育
    » 臺達於COMPUTEX 2025聚焦人工智慧與節能永續
    » 臺達電子公佈一百一十四年四月份營收 單月合併營收新臺幣407.82億元
    » TrendForce:自動化成關稅戰避風港 美智慧工廠成本遠超陸廠
    » 臺達電子公布114年第一季財務報表
      相關產品
    » igus新型PRM旋轉供能系統適用於機器人、物料搬運及攝影系統
    » Basler ace 2再添Gpixel CMOS感光元件
    » 兆鎂新18款全新USB3.1 (gen.1)單板及工業相機上市
    » 螺桿滑臺的線上配置器 可完成數百萬種設計變化
    » 兆鎂新全新IC 3D立體相機系統即日上市

    ?
    刊登廣告 新聞信箱 讀者信箱 著作權聲明 隱私權聲明 本站介紹

    Copyright ©1999-2025 遠播資訊股份有限公司版權所有 Powered by O3
    地址:臺北數位產業園區(digiBlock Taipei) 103臺北市大同區承德路三段287-2號A棟204室
    電話 (02)2585-5526 #0 轉接至總機 / E-Mail: webmaster@hope.com.tw
    主站蜘蛛池模板: 高陵县| 山西省| 玉门市| 石河子市| 旺苍县| 游戏| 花莲市| 杂多县| 兴义市| 岑溪市| 黎川县| 界首市| 崇文区| 禄丰县| 酒泉市| 鄂温| 汪清县| 怀远县| 江陵县| 德保县| 蒲江县| 沂源县| 会同县| 肥乡县| 东乌珠穆沁旗| 浦东新区| 盐边县| 嘉善县| 尚志市| 资阳市| 岱山县| 新河县| 蒙山县| 南投县| 会同县| 吉木萨尔县| 彭泽县| 荆门市| 东宁县| 普兰店市| 东明县|